
THE STATE OF TERRAFORM SECURITY 1

State of Open Source
Terraform Security
We analyzed the open source Terraform Registry to gauge its

current security and compliance posture.

THE STATE OF TERRAFORM SECURITY 2

Introduction
Infrastructure-as-code adoption is soaring as more and more
practitioners experience its benefits:

•	 It leverages automation and scalability to make compute
resource provisioning simpler than ever.

•	 It minimizes human error by making infrastructure deployment
consistent and predictable.

•	 It codifies institutional knowledge that reduces future risk.

•	 Most importantly, all of those benefits add up to save time and
resources for teams.

Infrastructure-as-code,
sometimes referred to
as infrastructure code or
abbreviated as IaC, is used
to automate infrastructure
deployment, scaling, and
management through the
use of machine-readable
configuration files.

Learn more about IaC >

Terraform is a popular
open-source declarative
infrastructure-as-code
framework used primarily
to define resources in
public cloud services.
HashiCorp is the company
behind Terraform along with
commercial versions of it. In
this report, we’ll be referring
specifically to the open-
source framework.

Learn about Terraform >

As with any emerging technology, however, the power of IaC comes with its own “supply
chain” challenges. Because IaC is built first and foremost to provision functional infrastructure
resources, that oftentimes means that security isn’t prioritized as much as it should be.
Additionally, because it’s a relatively new technology and methodology, most code-level static
analysis and traditional cloud security tools don’t support infrastructure-as-code, leaving gaps
in coverage and unmitigated risk.

At Bridgecrew, it’s our mission to help teams close that gap, and the first step
in solving a problem is knowing you have one. That’s why we’re publishing this
research, and why we hope you’re reading it.

This report addresses the current state of IaC security and compliance,
starting with Terraform. In it, we cover:

•	 The overall compliance of public Terraform Registry modules
used to build resources for AWS, Azure, and Google Cloud

•	 The most common misconfigurations categories, why they’re
common, and how to prevent them

•	 Trends in the most popularly downloaded modules

•	 Recommendations for approaching IaC security

We hope this research and guidance gives you insight into the state of
IaC security as a whole and into your own IaC security posture.

https://bridgecrew.io/blog/infrastructure-as-code-security-101/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://www.terraform.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://bridgecrew.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://www.terraform.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020

THE STATE OF TERRAFORM SECURITY 3

About the data
The data in this report was collected by scanning the public Terraform Registry using Checkov,
our open source infrastructure-as-code static analysis tool.

Maintained by HashiCorp,
cloud providers, and
community contributors, the
Terraform Registry is made
up of over 3K modules.
Modules are self-contained
packages of Terraform
configurations that are
managed as a group.

Check out the Registry >

Checkov is Bridgecrew’s
open source scanning tool
for infrastructure-as-code.
Released in December 2019,
Checkov now has over 600K
downloads and supports
scanning for Terraform,
CloudFormation, Kubernetes,
Azure Resource Manager,
and Serverless frameworks.

Learn more about Checkov >

DATA SOURCE
In this research, we analyzed modules within the public and open
source Terraform Registry.

Terraform modules come pre-built with standardized configurations
and variable templates, which we have cross-checked against common
industry standards. All modules are public under common open source
licenses and can be found in other variations in downstream projects
utilizing them to build more complex environments.

This research is based on over 2.6K scanned Registry
modules used to build resources in AWS, Azure, and
Google Cloud.

Keep in mind that because the Terraform community is an active and
growing community, the Registry is constantly growing, and modules
are constantly being updated. The data in this report is up-to-date as
of June 15, 2020, 4 am PDT.

DATA ANALYSIS
To scan the Registry, we utilized our open-source infrastructure-as-
code scanning tool Checkov.

Checkov has over 300 compliance and security checks
across AWS, Azure, and Google Cloud.

Although difficult to create a universal benchmark of industry security
standards to cover all the major cloud providers, we leverage cloud
security policies as defined by the Center of Internet Security (CIS),
AWS Foundations, SOC2, PCI, and additional best practices to create
Checkov’s checks.

https://registry.terraform.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://www.checkov.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://registry.terraform.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020
https://www.checkov.io/?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020

THE STATE OF TERRAFORM SECURITY 4

Key findings
After analyzing 2.6K Terraform Registry modules used to build resources on AWS, Azure, and
Google Cloud, this is what we found:

Nearly 1 in 2 modules within the Terraform
Registry is misconfigured.

Q2 2020 saw the biggest quarter-over-
quarter growth, as well as the highest ratio of
misconfigured to compliant modules yet.

Since 2017, misconfigured modules have been
downloaded over 15M times. 8 out of the 10 most
popular modules are misconfigured.

Modules used to provision AWS resources make
up the vast majority of the Terraform Registry
and are the most likely to be misconfigured.

The most common misconfigurations are in the
Backup and Recovery, Logging, and Encryption
categories.

THE STATE OF TERRAFORM SECURITY 5

Terraform has become one of the leading provisioning frameworks for
multi-cloud development. There has been a steady growth of modules
both from the Terraform team and from community contributors.

As you can see in Figure 1, there has been a dramatic rise in module
contributions within the Terraform Registry since 2019—especially
in Q2 2020. Unfortunately, as you can see in Figure 2, many of those
contributions contain misconfigurations.

Terraform module compliance

Figure 1: Monthly
Terraform Registry
growth since 2017

The Terraform Registry
has seen, on average,

35% quarter-over-
quarter growth. Q2

2020 saw the biggest
jump in contributions

with 83% quarter-over-
quarter growth.

Figure 2: Quarterly
Terraform Registry

growth by compliance

The ratio of misconfigured
modules to compliant

modules has fluctuated
between 38% and
45%. Q2 2020 saw

a slight increase,
with 48% containing

misconfigurations.

Q2 2020 growth within the
Terraform Registry seemingly
coincides with the global
COVID-19 pandemic. This
finding is consistent with
several accounts that
development work has seen
an uptick since the global
lockdown.

https://github.blog/2020-05-06-octoverse-spotlight-an-analysis-of-developer-productivity-work-cadence-and-collaboration-in-the-early-days-of-covid-19/
https://github.blog/2020-05-06-octoverse-spotlight-an-analysis-of-developer-productivity-work-cadence-and-collaboration-in-the-early-days-of-covid-19/

THE STATE OF TERRAFORM SECURITY 6

To get a sense of the high-level state of Terraform compliance and security, we scanned the
data set for known misconfigurations and risk.

Figure 3: Terraform
Registry Modules by

compliance

Out of all the Terraform
modules used to build

resources in AWS, Azure,
and Google Cloud, 44%

contain at least one
misconfiguration.

Note: Modules that do not
have a compliant or non-

compliant state are not
included in this figure.

The fact that nearly one in two modules in the Terraform Registry contain misconfigurations
confirms our hypothesis that infrastructure-as-code security is not yet a top priority. It also
tells us a few things about the IaC and Terraform landscapes:

•	 Terraform is thriving. The community around Terraform draws individual contributors,
as well as organized development groups to build and contribute modules. On the one
hand, they increase the usability of Terraform as a cloud provisioning language, but on
the other, they expose more end-users to modules that aren’t built according to industry
benchmarks.

•	 Industry standards are improving. Newly issued services include better requirements and
definitions around proper usage. Cloud providers are investing more in educating the
market on how to best use their services, and downstream module developers have to
realize it’s their responsibility to write new modules based on those standards.

Terraform module compliance (continued)

THE STATE OF TERRAFORM SECURITY 7

Figure 4: Categories
by failing vs.

passing checks

The three most
common failing check
categories are Backup

and Recovery (81%),
Audit Logging (73%),

and Encryption (71%).

Check category compliance
We found that the majority of checks fail because the modules’
optional arguments for enhancing data security and traceability were
not defined.

In addition to looking at the nature of how checks fail, we looked at
why they failed. In Figure 4, we grouped checks by category, which
refers to the broad classifications defined by CIS. These categories are
intended to be applicable across cloud providers.

LOGGING
Modules that lack defined logging options can have negative
governance consequences and can hinder investigations of suspected
security incidents. Granular auditing, offered by most popular services,
is a great way to ensure that fine-grained activities—such as S3 access
logs—are stored for forensic and governance purposes.

We speculate that logging checks often fail because it’s assumed
that centralized logging is defined on the account level rather than in
individual provisioned resources. We’ve also seen a lack of awareness
in the ability to define logging at the infrastructure code level.
Alternatively, because storing logs is an additional cost, teams may
intentionally avoid using full audit logging capabilities.

To gather this data, we
analyzed the resources
within each Terraform
Registry module against
hundreds of predefined
checks within Checkov.
Checks fail for a variety
of reasons and fall into a
handful of categories.

See all Checkov checks >

Logging misconfigurations
are modules with the ability
to define stricter audit
logging settings but do not
use that configuration by
default.

https://www.checkov.io/3.Scans/resource-scans.html?utm_medium=pdf&utm_source=bridgecrew&utm_campaign=state-of-terraform-security-2020

THE STATE OF TERRAFORM SECURITY 8

BACKUP AND RECOVERY
Using standard backup and recovery protocols is the first line of
defense against any disruption of service. Specifically, for data-related
workloads, the addition of near-term backup options ensured that
systems are promptly restored to their functional states.

As with logging-related misconfigurations, similar suggestions around
centralized management and cost savings could explain why these are
not utilized by default by the public modules.

ENCRYPTION
Defining either encryption at rest or in transit is required by
foundational best practices requirements.

Applying native encryption helps ensure that data exposed publicly
is not accessible without a decryption mechanism. For organizations
managing multiple data storage technologies with public interfaces,
encryption is the optimal method to protect data against unintended
external access. With embedded encryption costs drastically reduced
over the past few years, it remains a question as to why most modules
do not include this configuration by default.

Encryption-related
misconfigurations are
modules that do not, by
default, enable encryption at
rest or in transit.

ADDITIONAL OBSERVATIONS
•	 Across the board, Identity and Access Management (IAM) is mostly properly configured

across public modules. This may be because IAM misconfiguration detection in build-
time is quite nuanced and complex. There are a few basic checks to ensure that MFA is
enabled, and password policies are met, but IAM is an area that is notoriously hard to
automate and gauge in build-time.

•	 Networking is also a mostly compliant category with just 22% of checks failing. We were
happy to see strong compliance in the Networking category as these misconfigurations
can potentially lead to more risk than other categories. Networking or compute instances
exposed on the Internet can be hacked by malicious actors that can attempt to use
them to infiltrate into privately hosted cloud networks and, from there, obtain access to
sensitive data.

•	 General Security, which contains universal configurations usually tied up to the account
level, is also fairly secure, with just 25% of checks failing.

Check category compliance (continued)

Backup and recovery
misconfigurations are
modules that are missing
required parameters that
utilize default backup
procedures.

THE STATE OF TERRAFORM SECURITY 9

Compliance across cloud providers

Figure 5: Module
volume by cloud

providers and
compliance

AWS modules make up
76% of the Terraform

Registry. AWS has
the highest ratio of

misconfigured to
compliant modules (46%)

while Google Cloud has
the lowest (33%).

The Terraform Registry is made up of modules that build cloud
resources for specific cloud providers. Checkov is also equipped with
provider-specific checks.

To add provider-specific context to our findings, we analyzed modules
across the three major cloud providers—AWS, Azure, and Google
Cloud—for overall compliance and interesting findings in specific
categories.

As you can tell by Figure 5, AWS modules make up the vast majority of the Registry, which is
not entirely surprising. AWS is the biggest cloud provider leading in global coverage, product
portfolio, and user base. Additionally, the Terraform community has embraced AWS and its
services since the beginning, while Azure and Google Cloud are starting to make gains.

Keep in mind that while
we’ve devoted considerable
provider-specific checks,
AWS was our first cloud
provider and may have
slightly more coverage.
With that in mind, let’s
look at the percentage
of configurations across
categories and cloud
providers.

THE STATE OF TERRAFORM SECURITY 10

Figure 7:
Misconfiguration ratio

by category for each
cloud provider

The most frequently failing
checks are Logging within

Google Cloud modules
and Kubernetes within

AWS modules. The most
frequently passing checks

are IAM within AWS and
Google Cloud modules.

Figure 6: Distribution
of check categories

for each cloud
provider

The most frequently
occurring check category
for AWS is IAM. For Azure

and Google Cloud, the
largest check category is

Networking.

Check categories across cloud providers
Best practices and configuration settings vary slightly from one provider to another, so looking
at categories across them all doesn’t represent the nuanced cloud security landscape. To narrow
in on misconfigured categories within each cloud provider, we started by looking at the most
prevalent check categories across providers, as shown in Figure 6.

Next, we looked at the misconfiguration ratio for each in Figure 7 and, based on those findings,
dug into misconfiguration categories specifically relevant to each cloud provider.

THE STATE OF TERRAFORM SECURITY 11

AWS
For AWS modules, over half of the checks in Backup and recovery, Logging, and Encryption
categories failed. The main reason these checks fail so commonly is that they are among the
most common optional fields in most Terraform modules. We analyzed these categories in
Figure 8 to see if anything interesting popped out. The top three most common failing checks
in these categories within AWS modules have to do with S3 bucket logging, versioning, and
encryption.

Figure 8: Top failing logging, backup, and encryption checks found in AWS modules

Check categories across cloud providers (continued)

THE STATE OF TERRAFORM SECURITY 12

Figure 9: Top failing Kubernetes checks found in Google Cloud modules

GOOGLE CLOUD
Across the board, Google Cloud modules are the most compliant. IAM checks were almost
entirely compliant, with nearly all 500+ passing. Across almost every other category, there’s
room for improvement. Most notably, nearly all 100+ Logging checks failed, and over 75% of the
~200 Encryption checks failed.

We were interested in taking a look at Kubernetes checks within Google Cloud, as there has
been a concerted effort to ensure GKE is preconfigured with CIS benchmarks in mind.

Despite that effort, we found many recurring gaps within the 700+ checks. As you can see in
Figure 9, most of the failing checks are related to missing authentication hardening and lack of
Network Policy and PodSecurityPolicy controllers.

Check categories across cloud providers (continued)

THE STATE OF TERRAFORM SECURITY 13

Figure 10: Top failing Networking checks found in Azure modules

AZURE
For five of the seven categories across Azure modules, over 50% of checks failed. However,
it’s important to note that the sample size of Azure modules is much smaller than the other
providers—the only categories with 100+ checks are Kubernetes and Networking.

That said, we found some interesting findings when looking at failing checks within the ~500
Networking checks. As you can see in Figure 10, most Networking checks failed primarily due
to a lack of port restrictions in the various database modules Azure has to offer. Restricting
port access to those absolutely required by those databases would drastically improve these
modules from a security and compliance standpoint.

Check categories across cloud providers (continued)

THE STATE OF TERRAFORM SECURITY 14

Compliance of Terraform modules in use
Examining Registry modules in isolation gives us a solid baseline for the overall state of
Terraform security, but it doesn’t capture the real-life implications for developers and teams
using these modules in their own applications every day.

To better understand the potential impact of misconfigurations, we extrapolated our previous
findings across download data and analyzed the most popular downloaded modules for trends.

Figure 11:
Misconfiguration ratio
of module downloads

When looking at Registry
module downloads, we
found that 56%—which

amounts to over 15M
downloads—contained

misconfigured resources.

The fact that the misconfiguration ratio for downloaded modules is higher than that of modules
overall suggests that many of the more popular modules contain misconfigured resources.

At this point, we should be reminded that many of these misconfigurations do not inherently
represent risk. Misconfigurations’ eventual impact on organizations’ overall cloud security or
compliance posture is affected by various factors, including the nature of resources and their
intended use, as well as additional protective layers put in place at the cloud provider level.

THE STATE OF TERRAFORM SECURITY 15

Lastly, we analyzed the most popularly downloaded modules within the Registry by compliance.

Our hypothesis that misconfigured modules are in higher circulation is confirmed by Figure 12.
Out of just the top 10 most downloaded modules, 8 contain misconfigurations. Analyzing the
most popularly downloaded modules revealed a few interesting findings:

•	 The most downloaded configured modules include popular networking modules in AWS
and Google Cloud. Among them, compliant and hardened modules for Security Groups and
VPC settings were prevalent.

•	 The most downloaded misconfigured modules include some very popular and widely used
services such as AWS RDS, AWS EKS, AWS ALB, and AWS IAM.

Figure 12: Terraform modules with over 100K downloads by compliance

Compliance of Terraform modules in use (continued)

THE STATE OF TERRAFORM SECURITY 16

Recommendations
At Bridgecrew, we believe that maintaining compliance as early as possible not only hardens
your infrastructure but is also a much more cost-effective method to protect against risk. By
defining configurations upstream, you can ensure configurations are prevented as part of every
code review and avoid relying on other teams to fix them downstream.

Here are a few ways you can start addressing cloud misconfigurations before they become risks:

ENFORCE CONSISTENT POLICIES IN FAMILIAR WORKSPACES
There are multiple techniques to prevent misconfigurations from ever getting to production.

•	 For individual contributors, start by introducing a pre-commit hook scanner or an IaC
linter to capture misconfigurations during routine code authoring.

•	 For smaller teams, a lightweight CI/CD job can catch most common misconfigurations and
revert them to their code owner.

•	 For larger teams, we recommend looking at developing a service catalog model and pre-
approve specific modules after testing them against static analysis.

FIX MISCONFIGURATIONS FAST AND EARLY
Like vulnerabilities, infrastructure misconfigurations can quickly pile-up and create unworkable
backlogs. Performing binary, non-intrusive code fixes during build-time can help ensure you’re
meeting compliance standards.

•	 Start by enforcing consistent backup and log auditing policies that can be added using a
single argument in most frameworks.

•	 For more complex problems such as network or IAM rightsizing, take a holistic approach
to ensure complex logic is always managed in IaC and goes through standard code review
processes.

•	 To improve data security posture by applying end-to-end encryption, we recommend
migrating existing non-IaC workloads into pre-vetted modules that always explicitly define
encryption at rest and in transit.

IMPROVE “DAY-TWO” VISIBILITY INTO CONFIGURATION CHANGES
Infrastructure provisioning is an ongoing process. With day-one activities usually revolving
around getting configurations planned and applied as expected, day-two is a continuous effort
to ensure changes are properly logged and versioned in CI/CD automation workflows. Having
eyes and ears from commit, through build, and all the way to deployment makes it much easier
to trace errors and revert back to known good states.

Conclusion
Cloud-native technology is enabling developers to innovate and build faster than ever before.
At Bridgecrew, we’d like to see every developer empowered with the knowledge, skills, and
tooling to be able to ship secure products into the cloud. Bridgecrew was founded as part
of a community effort to share collective knowledge and make security more accessible to
developers. We are hopeful that with this information in hand, developers and practitioners will
be empowered to play a bigger part in securing the cloud infrastructure they build.

Bridgecrew provides teams both big and small, with an all-in-one platform to find, fix, and
prevent cloud security issues and violations. With support for AWS, Azure, Google Cloud,
Terraform, CloudFormation, Kubernetes, and Serverless, Bridgecrew is transforming the way
teams approach cloud security by automating, codifying, and streamlining it.

GET STARTED WITH BRIDGECREW TO:

•	 Find and fix misconfigurations in cloud resources and IaC.

•	 Enforce hundreds of built-in policies across security and compliance benchmarks.

•	 Embed guardrails via IDE plugins, pre-commit hooks, and native VCS and CI/CD integrations.

GET STARTED FOR FREE

https://www.bridgecrew.cloud/login/signUp?utm_source=pdf&utm_content=helmcharts

